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LETTER TO THE EDITOR 

Polymer chains with multiple interactions 

M K Kosmasf and J F Douglas$ 
i Chemistry Department, University of Ioannina, loannina, Greece 
+ The Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 
OHE, UK 

Received 21 October 1987 

Abstract. The behaviour of a chain in a d-dimensional space interacting with a generalised 
surface (a plane, a rod or a point) of dimensionality d l l  (2, 1 or 0) is described. Fixed 
points of the system are calculated to first order in E = (4- d ) / 2  and E ,  = 2 - d + dll  using 
a multiple E expansion procedure, and the relevance of the surface and the excluded 
volume interactions is discussed. 

There are many interesting problems in polymer science where more than one interac- 
tion potential is present. Examples include the adsorption of non-ideal chains where 
excluded-volume interactions and interactions with a surface are present (Reeve and 
Guttmann 1980, 1981, Kosmas 1981, 1985, 1986, Diehl and Dietrich 1981a, b, 1983, 
Freed 1983, 1987, Eisenriegler 1985, Nemirovsky and Freed 1985a, b, 1986, Douglas 
er a1 1986a, b, 1987, Nemirovsky er a1 1986) or block copolymers where different 
interactions between the various blocks exist (Joanny er a1 1984, Kosmas 1984, Douglas 
and Freed 1987, Sdranis and Kosmas 1987). There are also the important instances 
of binary and ternary interactions (Yamakawa 1966, Stephen and McCauley 1973, 
Stephen 1975, Bruns 1980, 1984, Duplantier 1982, 1987, Kholodenko and Freed 1984, 
Cherayil er a1 1985) and the combination of hydrodynamic and excluded-volume 
interactions (Jasnow and Moore 1977, Al-Noaimi er a1 1978, Shiwa and Kawasaki 
1982, Oono and Kohmoto 1983, Allesandrini and Pesci 1984, Wang er a1 1986). We 
can also take various permutations of these interactions to obtain a rather large class 
of multiple interaction problems. In this letter some thoughts on the specific example 
of adsorption of a non-ideal chain on a generalised (variable-dimension) surface 
(Kosmas 1981, 1985, 1986, Douglas et al 1986b, 1987) are presented as a representative 
example of a chain under the influence of more than one potential. This choice is also 
representative of the general case where the multiple interactions do not necessarily 
have the same critical dimension. 

For the case of a chain with excluded volume, interacting with a generalised surface 
(a surface, a rod or a point) of dimensionality d,, , the following probability distribution 
is suitable (Kosmas 1981, 1985, 1986, Douglas et a1 1986a, b, 1987) 

0305-4470/88/030155 + 04$02.50 0 1988 IOP Publishing Ltd L155 



Letter to the Editor 

where P0(R(7) )  is the probability distribution of the ideal chain, u2 is the excluded- 
volume parameter (defined to be double that used previously by Kosmas) and U, is 
the interaction parameter between the N polymeric units and the surface. d, = d - dl, 
is the dimensionality of the space orthogonal to the surface of dimension dl l  such that 
the dimensionality of the space d equals d,  + dl l  , As has been discussed before (Kosmas 
1981, 1985, 1986, Douglas et a1 1986b, 1987), the critical values of d and d, for the 
excluded-volume and surface-interaction theories are 4 and 2 ,  respectively. 

Two different E parameters can be defined as E = 4 - d and E ,  = 2 - d,  = 2 + d,l - d 
expressing the deviation from the critical values of d and d, .  For E = 1, 2 or 3 we are 
at the three-dimensional, the two-dimensional (surface) and the one-dimensional (line) 
spaces, respectively, while for dl, = 2 , l  or 0 we have an interacting surface, an interacting 
rod or an interacting point, respectively. Here a multiple-& procedure is introduced 
involving an expansion in both E and which recovers the theory with each E alone 
and for the special case E = E,(dll = 2 )  by construction. 

The methods of Kosmas (Kosmas 1981,1985,1986, Freed 1987) based on exponenti- 
ation conditions and Freed and co-workers (Douglas et al 1986b, 1987, Freed 1987) 
using a direct renormalisation approach, when applied to the system of a non-ideal 
chain interacting with a surface ( E  = E ,  = 1)  give the same equations (to be shown 
elsewhere) for the determination of the fixed points when there is only one E ( dl l  = 2 ) .  
Formally, the two methods can be extended to problems with more than one E in 
leading order in perturbation theory. The equations determining the fixed points and 
the critical exponents, including both E and E~ parameters, are 

8( U;)' - U ~ E  = 0 ( 2 a )  

2u:uz*+2(U:)2-U:El = o  
and determine the following fixed points of the system up to first order in E and E , :  

U; = ~ / 8  u : = o  expanded chain, no surface interactions 

u f = o  U: = E,/2 ideal, desorbed chain 

and the fixed point with both interactions non-zero: 

U; = ~ / 8  = ( ~ 1 / 2 ) - ( ~ / 8 )  expanded, desorbed chain. 

No proof is given here that such a scheme holds in higher order and the authors 
recognise that until such a scheme is given the method must be considered tentative. 
We now explore the implications and consistency of the scheme at leading order. 

When the two potentials act independently it is known that the values of the 
crossover exponents 4; = ( 2  - d , ) / 2  for the surface interactions in the absence of 
excluded-volume interactions, and 42 = (4 - d ) / 2  for the binary excluded-volume inter- 
actions, must be positive for the interactions to be relevant. This can be seen from 
the known behaviour of the two independent cases. For example, the partition function 
at the critical dimension d,  = 2 of a surface interacting chain without excluded-volume 
interactions ( u2 = 0) is given by (Kosmas 1981) 

C, = Co(l - In N +  ~ 5 , ~  In N 2 - .  . .) = Co(l + In N ) - '  = Co(l + 4: In N ) - '  

+4;=  UT^= E J ~ =  ( 2  - d , ) / 2  surface interactions ( 3 u )  
where CO is the Gaussian chain contribution in the limit of vanishing surface interaction. 
The partition function for the chains with only excluded volume at the critical dimension 
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d = 4 is similarly given by 

C2= Co(l + u2 In N - $ u :  In N 2 + .  . .) = Co[l +4u2 In 
= CO[ 1 + 42 In (3b) 

where for variable dimension 42 is given by (Stephen 1975, Kosmas 1982, Douglas 
and Freed 1983, Duplantier 1986): 

t $ l = 4 ~ ; =  ~ / 2 = ( 4 - d ) / 2  excluded volume interactions. (3c) 

For 4:, 42 > 0, In N'@t-  N'@t and In NQ2- N'2 are dominant over the unity of the 
ideal problem and the corresponding interactions are relevant while for 4:, 42 < 0, 
N'@t,  N'@2 are negligible compared to unity and the interactions are irrelevant. 

For example, for an ideal chain ( u2 = 0) in a three-dimensional space, interacting 
with a point, where d = 3 and dil = 0 we have E, = 2 - d ,  = - 1. The adsorption crossover 
exponent 4: of (3a)  then becomes negative, #: = u $ ~  = ~ , / 2  = -$< 0, and the interac- 
tions with the point are irrelevant and can be neglected in the long-chain limit. For 
the case of a rod interacting with a Gaussian chain u2 = 0 and E, = 0 so that 4: = 0. 
In this case we have marginality and the various properties involve log corrections 
(Kosmas 1981, 1985, 1986, Douglas et a1 1986b, 1987) and can be summed up. 

The presence of the excluded-volume interactions modify 4: of (3a) to r$s according 
to the new value of UT. For the case of dll = 2, for example, E, = E = 4-  d and a 
modified value of +s = U T  = 3818 from the third fixed point of (2a)  and (2b) is taken 
in agreement with the exact &-expansion results of Douglas er a1 (1986b, 1987). Of 
interest is the study of the non-trivial fixed point U T  = ( ~ , / 2 )  - (&/8)  +O(E,E, E ~ )  taken 
when both interactions are turned on. For a three-dimensional chain, E = 4 - d = 1 so 
that U T  becomes - 2  for the case of an interacting point (dll= 0), -: for the interacting 
rod (dll = 1) and for the interacting plane (dll = 2). What we see is that there is a 
lowering of the values of U: of an expanded chain from those of the ideal chain being 
-4 for the point, 0 for the rod and 4 for the plane, which reflects the chain swelling 
and the reduced probability of surface contacts. 

Similar phenomena are expected to occur when applying the method to polymers 
with excluded volume of both ternary and binary types (Yamakawa 1966, Stephen and 
McCauley 1973, Stephen 1975, Lawrie 1979, 1984, Duplantier 1982, 1987, Bruns 1980, 
1984, Kholodenko and Freed 1984, Cherayil et a1 1985). Again two different critical 
values of the dimensionality exist for the two kinds of interactions, 4 for the binary 
and 3 for the ternary interactions, and again as the chain swells the three-body 
interactions should become irrelevant. We hope to apply the method to this important 
problem once the method has been further studied using the relatively simple example 
of surface-interacting polymers with excluded volume. 
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